Документ подписан простой электронной подписью Информация о владельце:

ФИО: Гнатюк Сергей интистерство СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: Первый гровогора льное госу дарственное бюджетное образовательное дата подписания: 15.10.2025 11:48:19
Учикальный программный ключ:
5ede28fe5b714e680817c5% 23 24 Баруский государственный аграрный университет имени к.е. ворошилова»

«Утверждаю» Декан инженерного факультета Фесенко А. В. «23» апреля 2025 г.

РАБОЧАЯ ПРОГРАММА

учебной дисциплины «Сопротивление материалов»

для направления подготовки 35.03.06 «Агроинженерия» направленность (профиль) «Технические системы в агробизнесе»

Год начала подготовки - 2025

Квалификация выпускника - бакалавр

Рабочая программа составлена с учетом требований:

- порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования – программам бакалавриата, программам специалитета, программам магистратуры, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 06.04.2021 № 245;
- федерального государственного образовательного стандарта высшего образования по направлению подготовки 35.03.06 «Агроинженерия», утвержденного приказом Министерства образования и науки Российской Федерации от 23.08.2017 № 813.

Преподаватели, подготовившие рабочую программ	y:
доцент кафедры «Проектирование и строительство с/х объектов»	В.А. Евсюков
Рабочая программа рассмотрена на заседании кафе, с/х объектов (протокол № 8 от «09» апреля 2025 г.)	
Заведующий кафедрой	В.П. Матвеев
Рабочая программа рекомендована к использования комиссией инженерного факультета (протокол № 8	•
Председатель методической комиссии _	А.В. Шовкопляс
Руководитель основной профессиональной образовательной программы	В.И. Шаповалов

1. Предмет. Цели и задачи дисциплины, её место структуре основной образовательной программы

Сопротивление материалов – дисциплина в которой излагаются основы и методы инженерных расчетов элементов конструкций на прочность, жесткость устойчивость и выносливость при одновременном удовлетворении требований надежности, экономичности и долговечности.

Предметом дисциплины являются следующие объекты:

- инженерные расчеты на прочность и жесткость стержневых систем, работающих на растяжение и сжатие, сдвиг, кручение, изгиб;
- методы испытаний по определению характеристик прочности, пластичности и упругости материалов;
- основы экспериментального исследования механического поведения материалов и элементов конструкций;
- основы теории напряженного и деформированного состояния в точке тела;
- классические теории прочности и пластичности материалов;
- расчеты на прочность и жесткость при сложном сопротивлении элементов конструкций;
- расчеты на устойчивость сжатых стержней;
- расчеты на прочность и жесткость при динамическом и циклическом характере нагружения изделий.

Целью дисциплины является - формирование комплекса знаний в области проведения инженерных расчётов при простом и сложном сопротивлении на прочность, жёсткость и устойчивость элементов конструкций, обеспечивающих требуемую надёжность и безопасность работы изделий в условиях действия статических и динамических нагрузок.

Основные задачи изучения дисциплины:

- изучение теоретических основ и методов проведения расчетов на прочность, жёсткость и устойчивость элементов конструкций и машин при простом и сложном сопротивлении;
- формирование умений самостоятельно проводить расчеты на прочность, жёсткость и устойчивость элементов конструкций;
- формирования навыков определения основных механических свойств материалов по результатам стандартных лабораторных испытаний;
- формирование первичных способностей проведения экспериментальных исследований при выполнении ряда лабораторных работ;
- ознакомление с элементами рационального проектирования конструкций.

Место дисциплины в структуре образовательной программы.

Дисциплина «Сопротивление материалов» относится к дисциплинам обязательной части основой профессиональной образовательной программы высшего образования (Б1.В.02).

Основывается на базе дисциплин: в теоретической части сопротивление материалов базируется на математике и теоретической механике, в экспериментальной части - на физике и материаловедении.

Дисциплина читается в 3-ем семестре. Является основой для изучения следующих дисциплин: прочность конструкций, основы проектирования сельскохозяйственных машин, организации ремонта оборудования, детали машин и основы конструирования, курсовое и дипломное проектирование по специальным дисциплинам.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной

программы

	I	iipui pammi	
Коды компетенций	Формулировка компетенции	Индикаторы достижения компетенции	Планируемые результаты обучения по дисциплине
	Способен участвовать в проектировании	ПК-2.2 Производит расчеты при проектирован ии технических систем, систем технического обслуживания сельскохозяйс твенной техники	Знать: механические свойства и характеристики материалов, методики их определения; теорию расчета геометрических характеристик плоских поперечных сечений брусьев; уметь: определять внутренние силовые факторы при различных видах деформаций элементов конструкций и строить их эпюры; выбирать материал деталей в зависимости от характера нагружения и условий эксплуатации машин; иметь навыки владения методикой расчета статически определимых и неопределимых конструкций; методами экспериментального определения напряжений и деформаций в деталях.
ПК-2	технических систем обеспечения технологических процессов сельскохозяйств енного производства	ПК-2.3 Способен участвовать в проектирован ии технических систем обеспечения технологичес ких процессов сельскохозяйс твенного производства	Знать: расчетные формулы напряжений и деформаций для различных видов деформаций с учетом вида нагружения элементов конструкций (условия прочности, жесткости и устойчивости); основы назначения допускаемых напряжений и коэффициента запаса прочности; условия проведения опытных исследований механических свойств материалов; уметь: производить расчеты на прочность, жесткость и устойчивость элементов машин и оборудования; пользоваться терминологией дисциплины; пользоваться нормативнотехнической документацией; иметь навыки владения прикладными методами с целью проведения проверочных расчетов, проектных расчетов и определения несущей способности конструкций; способами сопоставительного анализа опытных данных.

3. Объём дисциплины и виды учебной работы

Виды работ		Очная форма обучения		Очно- заочная форма обучения
Виды расст	всего	объём часов	всего часов	всего часов
	зач.ед./ часов 3		5 семестр	
Общая трудоёмкость дисциплины,	5/180	5/180	5/180	
зач. ед./часов, в том числе:				-
Аудиторная работа:	60	60	18	-
Лекции	24	24	8	-
Практические занятия	-	-	-	-
Лабораторные работы	36	36	10	-
Другие виды аудиторных занятий	-	-	-	-
Предэкзаменационные консультации	-	-	-	-
Самостоятельная работа обучающихся, час	120	120	162	-
Вид промежуточной аттестации (зачёт, экзамен)	экзамен	экзамен	экзамен	-

4. Содержание дисциплины

4.1. Разделы дисциплины и виды занятий (тематический план)

№ п/п	Раздел дисциплины	Л	ПЗ	ЛР	СРС
	Очная форма обучен	ния			
	Модуль 1				
	Раздел 1. Основные положения	4	-	6	12
1.	Тема 1. История развития науки о	_	_	2	4
1.	сопротивлении материалов.			2	-
	Тема 2. Наука о сопротивлении материалов.				
2.	Основные понятия и гипотезы. Расчетная схема.	2	-	2	4
	Силы внешние и внутренние. Метод сечений.				
3.	Тема 3. Понятие о деформациях и напряжении.	2		2	4
3.	Виды деформаций перемещениях сечений.			2	4
	Раздел 2. Геометрические характеристики	2		4	12
	плоских сечений.	4	_	7	12
	Тема 4. Статические моменты площади. Центр				
4.	тяжести площади. Моменты инерции плоских	1		2	6
7.	фигур. Моменты инерции относительно		1	_	2
	параллельных осей				
	Тема 5. Моменты инерции при повороте				
5.	координатных осей. Главные оси и главные	1		- 2	6
<i>J</i> .	моменты инерции. Радиус и эллипс инерции.	1	_	2	U
	Моменты сопротивления.				
	Раздел 3. Растяжение и сжатие.	2	-	4	12
	Тема 6. Напряжения и деформации. Закон Гука.				
6.	Допускаемое напряжение. Условие прочности и	1	-	2	6
	жесткости.				
7.	Тема 7. Поперечная деформация. Коэффициент	1	-	2	6
	E				

	Пуассона. Расчет бруса с учетом собственного веса. Брус равного сопротивления.				
	Раздел 4. Статически неопределимые	-	-	4	12
0	стержневые системы. Тема 8. Расчет статически неопределимых			2	-
8.	систем.	<u>-</u>	-	2	6
9.	Тема 9. Определение перемещений в статически неопределимых системах.	-	-	2	6
	Модуль 2		T	T	
	Раздел 5. Основы теории напряженного и	-	_	-	12
10.	деформированного состояния.				4
11.	Тема 10. Напряжение в точке твердого тела. Тема 11. Определение главных напряжений.	<u> </u>	_	-	4
12.	Тема 12. Линейное напряженное состояние.		_	_	4
13.	Тема 13. Плоское напряженное состояние.			_	4
13.	Раздел 6. Теории прочности.		<u> </u>	_	10
14.	Тема 14. Состояние вопроса.		 	_	4
	Тема 15. Закономерности деформирования и		1		
15.	разрушения материала.	-	-	-	2
16.	Тема 16. Классические теории прочности.	_	_	_	2
17.	Тема 17. Теория Мора.	_	_		2
17.	Раздел 7. Сдвиг. Срез. Смятие.	4	-	4	10
18.	Тема 18. Допускаемые напряжения при сдвиге.	1	_	1	4
19.	Тема 19. Срез и смятие.	1	_	1	2
20.	Тема 20. Расчет заклепочных соединений.	1	_	1	2
21.	Тема 21. Расчет сварных соединений.	1	_	1	2
-	Раздел 8. Кручение.	2	-	6	10
	Тема 22. Напряжения и деформации при			-	
22.	кручении. Условия прочности и жесткости при	-		- 2	4
	кручении.				
22	Тема 23. Расчет валов на прочность и жесткость	1		2	4
23.	при кручении.	1	_	2	4
24.	Тема 24. Расчет на прочность цилиндрических	1		2	2
24.	винтовых пружин.	1	_	2	2
	Раздел 9. Поперечный изгиб.	4	-	4	10
25.	Тема 25. Построение эпюр поперечных сил и изгибающих моментов.	1	-	1	2
26.	Тема 26. Расчет на прочность при изгибе.	1	-	1	2
27.	Тема 27. Полный расчет балок на прочность при изгибе.	1	-	1	2
28.	Тема 28. О рациональной форме сечения.	1	-	1	4
	Раздел 10. Сложное сопротивление.	4	-	2	10
29.	Тема 29. Совместное действие кручения и изгиба.	4	-	2	10
	Раздел 11. Продольный изгиб.	2	-	2	10
	Тема 30. Понятие об устойчивом и				
	тема 30. Понятие об устоичивом и		1	1 .	
30.	неустойчивом равновесиях стержня.	2	-	2	10
30.		2	-	2	10
30.	неустойчивом равновесиях стержня.	2 24	- 	36	10 120
30.	неустойчивом равновесиях стержня. Критическая сила. Формула Эйлера.	24	- - -		

	Раздел 1. Основные положения	-	-	2	18
1.	Тема 1. История развития науки о			1	6
1.	сопротивлении материалов.	-	-	1	6
	Тема 2. Наука о сопротивлении материалов.				
2.	Основные понятия и гипотезы. Расчетная схема.	-	-	1	6
	Силы внешние и внутренние. Метод сечений.				
3.	Тема 3. Понятие о деформациях и напряжении.				6
٥.	Виды деформаций перемещениях сечений.	1	1	-	O
	Раздел 2. Геометрические характеристики		_	2	12
	плоских сечений.	-	-	4	12
	Тема 4. Статические моменты площади.				
4.	Моменты инерции плоских фигур. Моменты	-	-	1	6
	инерции относительно параллельных осей.				
	Тема 5. Моменты инерции при повороте				
5.	координатных осей. Главные оси и главные	-	-	1	6
	моменты инерции. Радиус и эллипс инерции.				
	Раздел 3. Растяжение и сжатие.	2	-	2	12
	Тема 6. Напряжения и деформации. Закон Гука.				
6.	Допускаемое напряжение. Условие прочности и	1	-	1	6
	жесткости.				
	Тема 7. Поперечная деформация. Коэффициент				
7.	Пуассона. Расчет бруса с учетом собственного	1	-	1	6
	веса. Брус равного сопротивления.				
	Раздел 4. Статически неопределимые	2	_	2	12
	стержневые системы.			4	12
8.	Тема 8. Расчет статически неопределимых	1	_	1	6
<u> </u>	систем.			1	
9.	Тема 9. Определение перемещений в статически	1	_	1	6
	неопределимых системах.	•		•	Ü
	Модуль 2			T	
	Раздел 5. Основы теории напряженного и	-	-	_	22
10	деформированного состояния.				
10.	Тема 10. Напряжение в точке твердого тела.	-	-	-	6
11.	Тема 11. Определение главных напряжений.	-	-	-	6
12.	Тема 12. Линейное напряженное состояние.	-	-	-	6
13.	Тема 13. Плоское напряженное состояние.	-	-	-	4
1.4	Раздел 6. Теории прочности.		-	-	22
14.	Тема 14. Состояние вопроса.	-	-	-	6
15.	Тема 15. Закономерности деформирования и	-	_	_	6
	разрушения материала.				
16.	Тема 16. Классические теории прочности.	-	-	-	6
17.	Тема 17. Теория Мора.	-	-	-	4
	Раздел 7. Сдвиг. Срез. Смятие.	4	-	2	24
18.	Тема 18. Допускаемые напряжения при сдвиге.	1	-	1	6
19.	Тема 19. Срез и смятие.	1	-	1	6
20.	Тема 20. Расчет заклепочных соединений.	1	-	-	6
21.	Тема 21. Расчет сварных соединений.	1	-	-	6
	Раздел 8. Кручение.	-	-	-	12
22.	Тема 22. Напряжения и деформации при	_	_	_	4
	кручении. Условия прочности и жесткости.				
23.	Тема 23. Расчет валов на прочность и жесткость	-	-	-	4

	при кручении.				
24	Тема 24. Расчет на прочность цилиндрических				4
24.	винтовых пружин.	-	-	-	4
	Раздел 9. Поперечный изгиб.	-	-	-	16
25.	Тема 25. Построение эпюр поперечных сил и	_	_	_	4
	изгибающих моментов.		_	_	-
26.	Тема 26. Расчет на прочность при изгибе.	-	-	-	4
27.	Тема 27. Полный расчет балок на прочность при		_	_	4
	изгибе.				
28.	Тема 28. О рациональной форме сечения.	-	-	-	4
	Раздел 10. Сложное сопротивление.		-	-	4
29.	Тема 29. Совместное действие кручения и изгиба.	-	-	-	4
	Раздел 11. Продольный изгиб.	-	-	-	8
	Тема 30. Понятие об устойчивом и				
30	неустойчивом равновесиях стержня.	-	-	-	8
	Критическая сила. Формула Эйлера.				
	Всего	8	-	10	162
	Очно-заочная форма об	учения			
	Модуль 1		1	T	
	Раздел 1. Основные положения	-	-	-	-
1.	Тема 1. История развития науки о	-	_	_	-
	сопротивлении материалов.				
2	Тема 2. Наука о сопротивлении материалов. Основные понятия и гипотезы. Расчетная схема.				
2.		-	_	-	-
	Силы внешние и внутренние. Метод сечений. Тема 3. Понятие о деформациях и напряжении.				
3.	Виды деформаций перемещениях сечений.	-	-	-	-
	Раздел 2. Геометрические характеристики				
	плоских сечений.	-	-	-	-
	Тема 4. Статические моменты площади.				
4.	Моменты инерции плоских фигур. Моменты	-	-	-	-
	инерции относительно параллельных осей.				
	Тема 5. Моменты инерции при повороте				
5.	координатных осей. Главные оси и главные	-	-	-	-
	моменты инерции. Радиус и эллипс инерции.				
	Раздел 3. Растяжение и сжатие.	-	-	-	-
	Тема 6. Напряжения и деформации. Закон Гука.				
6.	Допускаемое напряжение. Условие прочности и	-	-	-	-
	жесткости.				
7.	Тема 7. Поперечная деформация. Коэффициент Пуассона. Расчет бруса с учетом собственного				
7.	веса. Брус равного сопротивления.	_	_	_	-
	Раздел 4. Статически неопределимые				
	стержневые системы.	-	-	-	-
	Тема 8. Расчет статически неопределимых				
8.	систем.	-	_	-	-
0	Тема 9. Определение перемещений в статически				
9.	неопределимых системах.	_		_	_
	Раздел 5. Основы теории напряженного и				
	деформированного состояния	•		_	-

10.	Тема 10. Напряжение в точке твердого тела.	-	_	-	-
11.	Тема 11. Определение главных напряжений.	-	-	-	-
12.	Тема 12. Линейное напряженное состояние.	-	-	-	-
13.	Тема 13. Плоское напряженное состояние.	-	-	-	-
	Раздел 6. Теории прочности.	-	-	-	-
14.	Тема 14. Состояние вопроса.	-	-	-	-
15.	Тема 15. Закономерности деформирования и				
13.	разрушения материала.	-	-	-	-
16.	Тема 16. Классические теории прочности.	-	-	-	-
17.	Тема 17. Теория Мора.	-	-	-	-
	Раздел 7. Сдвиг. Срез. Смятие.	-	-	-	-
18.	Тема 18. Допускаемые напряжения при сдвиге.	-	-	-	-
19.	Тема 19. Срез и смятие.	-	-	-	-
20.	Тема 20. Расчет заклепочных соединений.	-	-	-	-
21.	Тема 21. Расчет сварных соединений.	-	-	-	-
	Раздел 8. Кручение.	-	-	-	-
22.	Тема 22. Напряжения и деформации при				
22.	кручении. Условия прочности и жесткости.		_	_	_
23.	Тема 23. Расчет валов на прочность и жесткость	_	_		_
23.	при кручении.				
24.	Тема 24. Расчет на прочность цилиндрических	_	_	_	_
	винтовых пружин.				
	Раздел 9. Поперечный изгиб.	-	-	-	-
25.	Тема 25. Построение эпюр поперечных сил и	_	_	_	_
	изгибающих моментов.				
26.	Тема 26. Расчет на прочность при изгибе.	-	-	-	-
27.	Тема 27. Полный расчет балок на прочность при	_	_	_	_
	изгибе.				
28.	Тема 28. О рациональной форме сечения.	-	-	-	
	Раздел 10. Сложное сопротивление.	-	-	-	-
29.	Тема 29. Совместное действие кручения и	_	_	_	_
	изгиба.				
	Раздел 11. Продольный изгиб.	-	-	-	-
20	Тема 30. Понятие об устойчивом и				
30	неустойчивом равновесиях стержня.	-	- -	-	-
	Критическая сила. Формула Эйлера.				
	Всего	-	-	-	-

4.2. Содержание разделов учебной дисциплины Раздел 1. Основные положения

- Тема 1. История развития науки о сопротивлении материалов
- Тема 2. Силы внешние и внутренние. Понятие о деформациях и растяжении.
- Тема 3. Метод сечений. Виды деформаций. Основные гипотезы.

Раздел 2. Геометрические характеристики плоских сечений

- Тема 4. Статические моменты площади. Моменты инерции плоских фигур. Моменты инерции относительно параллельных осей.
- Тема 5. Моменты инерции при повороте координатных осей. Главные оси и главные моменты инерции. Радиус и эллипс инерции. Моменты сопротивления. Порядок определения главных моментов инерции. Порядок расчета.

Раздел 3. Растяжение и сжатие

- Тема 6. Напряжения и деформации. Закон Гука. Допускаемое напряжение. Условие прочности и жесткости.
- Тема 7. Поперечная деформация. Коэффициент Пуассона. Расчет бруса с учетом собственного веса. Брус равного сопротивления

Раздел 4. Статически неопределимые стержневые системы.

- Тема 8. Расчет статически неопределимых систем.
- Тема 9. Определение перемещений в статически неопределимых системах.

Раздел 5. Основы теории напряженного и деформированного состояния

- Тема 10. Напряжение в точке твердого тела.
- Тема 11. Линейное напряженное состояние.
- Тема 12. Плоское напряженное состояние.
- Тема 13. Определение главных напряжений.

Раздел 6. Теории прочности

- Тема 14 Состояние вопроса.
- Тема 15. Закономерности деформирования и разрушения материала.
- Тема 16. Классические теории прочности.
- Тема 17. Теория Мора.

Раздел 7. Сдвиг. Срез. Смятие

- Тема 18. Сдвиг. Допускаемые напряжения при сдвиге. Чистый сдвиг.
- Тема 19. Расчет на срез и смятие.
- Тема 20. Расчет заклепочных соединений.
- Тема 21. Расчет сварных соединений.

Раздел 8. Кручение.

- Тема 22. Напряжения и деформации при кручении. Условия прочности и жесткости.
- Тема 23. Расчет валов на прочность и жесткость при кручении.
- Тема 24. Расчет на прочность цилиндрических винтовых пружин.

Раздел 9. Поперечный изгиб.

- Тема 25. Построение эпюр поперечных сил и изгибающих моментов.
- Тема 26. Расчет на прочность при изгибе.
- Тема 27. Полный расчет балок на прочность при изгибе.
- Тема 28. О рациональной форме сечения.

Раздел 10. Сложное сопротивление.

Тема 29. Совместное действие кручения и изгиба.

Раздел 11. Продольный изгиб.

Тема 30. Понятие об устойчивом и неустойчивом равновесиях стержня. Критическая сила. Формула Эйлера.

4.3. Перечень тем лекций

			Объем, ча	
<u>No</u>	Темы лекций	Фо	рма обуче	КИН
п/п	2 3332 3333,433	очная	заочная	очно-
	N/ 1			заочная
	Модуль 1			
	Раздел 1. Основные положения	4	-	-
1.	Тема 1. История развития науки о сопротивлении материалов.	-	-	-
2.	Тема 2. Наука о сопротивлении материалов. Основные понятия и гипотезы. Расчетная схема. Силы внешние и внутренние. Метод сечений.	2	-	-
3.	Тема 3 Понятие о деформациях и напряжении. Виды деформаций перемещениях сечений.	2	-	-
	Раздел 2. Геометрические характеристики плоских сечений.	2	-	-
4.	Тема 4. Статические моменты площади. Моменты инерции плоских фигур. Моменты инерции относительно параллельных осей.	1	-	1
5.	Тема 5. Моменты инерции при повороте координатных осей. Главные оси и главные моменты инерции. Радиус и эллипс инерции. Моменты сопротивления.	1	-	-
	Раздел 3. Растяжение и сжатие.	2	2	-
6.	Тема 6. Напряжения и деформации. Закон Гука. Допускаемое напряжение. Условие прочности и жесткости.	1	1	-
7.	Тема 7. Поперечная деформация. Коэффициент Пуассона. Расчет бруса с учетом собственного веса. Брус равного сопротивления.	1	1	-
	Раздел 4. Статически неопределимые стержневые системы.	-	2	-
8.	Тема 8. Расчет статически неопределимых систем.	-	1	-
9.	Тема 9. Определение перемещений в статически неопределимых системах.	-	1	-
	Модуль 2			-
	Раздел 5. Основы теории напряженного и	_	_	
4.0	деформированного состояния.			-
10.	Тема 10. Напряжение в точке твердого тела.	-	-	-
11.	Тема 11. Определение главных напряжений.	-	-	-
12.	Тема 12. Линейное напряженное состояние.	-	-	-
13.	Тема 13. Плоское напряженное состояние.	-	-	-
1 /	Раздел 6. Теории прочности.	-		-
14.	Тема 14. Состояние вопроса.	_	-	-
15.	Тема 15. Закономерности деформирования и разрушения материала.	-	-	-
16.	Тема 16. Классические теории прочности.	-	-	-
17.	Тема 17. Теория Мора.	-	-	-
	Раздел 7. Сдвиг. Срез. Смятие.	4	4	-

18.	Тема 18. Допускаемые напряжения при сдвиге.	1	1	-
19.	Тема 19. Срез и смятие.	1	1	-
20	Тема 20. Расчет заклепочных соединений.	1	1	-
21	Тема 21. Расчет сварных соединений.	1	1	-
	Раздел 8. Кручение.	2	-	-
22.	Тема 22. Напряжения и деформации при кручении. Условия прочности и жесткости при кручении.	-	-	-
23.	Тема 23. Расчет валов на прочность и жесткость при кручении.	1	-	-
24.	Тема 24. Расчет на прочность цилиндрических винтовых пружин.	1	-	-
	Раздел 9. Поперечный изгиб.	4	-	-
25.	Тема 25. Построение эпюр поперечных сил и изгибающих моментов.	1	-	-
26.	Тема 26. Расчет на прочность при изгибе.	1	-	-
27.	Тема 27. Полный расчет балок на прочность при изгибе.	1	-	-
28.	Тема 28. О рациональной форме сечения.	1	-	-
	Раздел 10. Сложное сопротивление.	4		-
29.	Тема 29. Совместное действие кручения и изгиба.	4	-	-
	Раздел 11. Продольный изгиб.	2	-	-
30.	Тема 30. Понятие об устойчивом и неустойчивом равновесиях стержня. Критическая сила. Формула Эйлера.	2	-	-
	Всего	24	8	-

4.4. Перечень тем практических (семинарских) занятий-

Не предусмотрены

4.5. Перечень тем лабораторных работ

		Объем, час			
$N_{\underline{0}}$	Темы лабораторных работ	Форма обучения			
Π/Π		очная	заочная	очно-	
		Очная	заочная	заочная	
	Модуль 1			-	
	Раздел 1. Основные положения	6	2	-	
1.	Тема 1. История развития науки о сопротивлении	2	1	-	
1.	материалов.	4			
	Тема 2. Наука о сопротивлении материалов. Основные				
2.	понятия и гипотезы. Расчетная схема. Силы внешние и	2	1	-	
	внутренние. Метод сечений.				
3	Тема 3. Понятие о деформациях и напряжении. Виды	2	-	-	
3	деформаций перемещениях сечений.	4			
	Раздел 2. Геометрические характеристики плоских	4	2	-	
	сечений.	•	2		
	Тема 4. Статические моменты площади. Моменты				
4.	инерции плоских фигур. Моменты инерции	2	1	-	
	относительно параллельных осей				

5.	Тема 5. Моменты инерции при повороте координатных осей. Главные оси и главные моменты инерции. Радиус	2	1	-
	и эллипс инерции. Моменты сопротивления.			
	Раздел 3. Растяжение и сжатие.	4	2	-
	Тема 6. Напряжения и деформации. Закон Гука.			
6.	Допускаемое напряжение. Условие прочности и	2	1	-
	жесткости.			
	Тема 7. Поперечная деформация. Коэффициент			
7.	Пуассона. Расчет бруса с учетом собственного веса.	2	1	-
	Брус равного сопротивления.			
	Раздел 4. Статически неопределимые стержневые	4	2	-
	системы.	-	4	
8.	Тема 8. Расчет статически неопределимых систем.	2	1	-
0.	-		1	
9.	Тема 9. Определение перемещений в статически	2	1	-
<i></i>	неопределимых системах.		1	
	Модуль 2			-
	Раздел 5. Основы теории напряженного и	_	_	-
	деформированного состояния.		_	
10.	Тема 10. Напряжение в точке твердого тела.	-	-	-
11.	Тема 11. Определение главных напряжений.	-	-	-
12.	Тема 12. Линейное напряженное состояние.	-	-	-
13.	Тема 13. Плоское напряженное состояние.	-	-	-
	Раздел 6. Теории прочности.	-	-	-
14.	Тема 14. Состояние вопроса.	-	-	-
15.	Тема 15. Закономерности деформирования и	_	_	
	разрушения материала.			-
16.	Тема 16. Классические теории прочности.	-	-	-
17.	Тема 17. Теория Мора.		-	-
	Раздел 7. Сдвиг. Срез. Смятие.	4	2	-
18.	Тема 18. Допускаемые напряжения при сдвиге.	1	1	-
19.	Тема 19. Срез и смятие.	1	1	-
20	Тема 20. Расчет заклепочных соединений.	1	-	-
21	Тема 21. Расчет сварных соединений.	1	-	-
	Раздел 8. Кручение.	6	-	-
	Тема 22. Напряжения и деформации при кручении.			
22.	Условия прочности и жесткости при кручении.	2	-	-
	1 17			
23.	Тема 23. Расчет валов на прочность и жесткость при	2	_	-
	кручении.			
24.	Тема 24. Расчет на прочность цилиндрических	2	_	-
,	винтовых пружин.			
	Раздел 9. Поперечный изгиб.	4	-	-
25.	Тема 25. Построение эпюр поперечных сил и	1	_	-
	изгибающих моментов.			
26.	Тема 26. Расчет на прочность при изгибе.	1	-	-
27.	Тема 27. Полный расчет балок на прочность при	1	_	-
	изгибе.			
28.	Тема 28. О рациональной форме сечения.	1	-	-
	Раздел 10. Сложное сопротивление.	2	-	-

29.	Тема 29. Совместное действие кручения и изгиба.	2	1	-
	Раздел 11. Продольный изгиб.		•	-
	Тема 30. Понятие об устойчивом и			
30.	неустойчивом равновесиях стержня. Критическая сила.	2	-	-
	Формула Эйлера.			
	Всего		10	-

4.6. Виды самостоятельной работ-ы студентов и перечень учебнометодического обеспечения для самостоятельной работы обучающихся.

4.6.1. Подготовка к аудиторным занятиям

Учебная дисциплина «Сопротивление материалов» важная общеинженерная наука. Без фундаментальных знаний в этой области невозможно создание различных машин и инженерно-технических сооружений. Особое место при изучении дисциплины отводится аудиторным занятиям. Аудиторные занятия проводятся в виде лекций и лабораторных занятий - это важнейшие формы обучения студентов. Проводятся с целью закрепления и углубления знаний по дисциплине. В ходе лекций раскрываются основные вопросы в рамках рассматриваемой темы, делаются акценты на наиболее сложные и интересные положения изучаемого материала, которые должны быть приняты студентами во внимание. Материалы лекций являются основой для подготовки студента к лабораторным занятиям.

При подготовке к лабораторным занятиям студент должен:

- -изучить рекомендуемую литературу;
- -просмотреть самостоятельно дополнительную литературу по изучаемой теме;
- -знать вопросы, предусмотренные планом лабораторного занятия и принимать активное участие в их обсуждении;
- -без затруднения отвечать по тестам, предлагаемым к каждой теме.

Основной целью лабораторных занятий является - экспериментальнотеоретическое изучение механических характеристик различных материалов, их сопротивление деформациям и разрушению.

№ π/π	Темы расчётно-графических работ		
1.	Тема 2. Центральное растяжение-сжатие.		
2.	Тема 3. Кручение.		
3.	Тема 4. Плоский (прямой) изгиб бруса.		
4.	Тема 5. Плоский (прямой) изгиб бруса с кручением.		

4.6.2. Перечень тем курсовых работ (проектов)

Не предусмотрены

4.6.3. Перечень тем рефератов, расчетно-графических работ и иных видов индивидуальных работ

Не предусмотрены

4.6.4. Перечень тем и учебно-методического обеспечения для самостоятельной работы обучающихся

		Учебно-методическое обеспечение	Объём часов		
№	Тема самостоятельной		форма обучения		
п/п	работы		очная	заочная	очно- заочная
	Раздел 1. Основные положения			16	-
1.	Тема 1. История развития науки о сопротивлении материалов. Тема 2. Наука о сопротивлении материалов. Основные понятия и гипотезы. Расчетная схема. Силы внешние и внутренние. Метод сечений. Тема 3 Понятие о деформациях и напряжении. Виды деформаций перемещениях сечений.	1. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 1-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 76 с. 2. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 2-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 80 с.	10	16	-
2.	Раздел 2. Геометрич	10	16	-	
3.	Тема 4. Статические моменты площади. Моменты инерции плоских фигур. Моменты инерции относительно параллельных осей Тема 5. Моменты инерции при повороте координатных осей. Главные оси и главные моменты инерции. Радиус и эллипс инерции. Моменты сопротивления.	1. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 1-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 76 с. 2. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 2-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 80 с.	10	16	-
4.	Раздел 3.	Растяжение и сжатие	10	16	-

5.	Тема 6. Напряжения и деформации. Закон Гука. Допускаемое напряжение. Условие прочности и жесткости. Тема 7. Поперечная деформация. Коэффициент Пуассона. Расчет бруса с учетом собственного веса. Брус равного сопротивления.	пособие (Часть 1-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М.,	10	16	-
6.	Раздел 4. Статичес	ки неопределимые стержневые системы	10	16	-
3.	Тема 8. Расчет статически неопределимых систем. Тема 9. Определение перемещений в статически неопределимых системах.	1. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 1-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 76 с. 2. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 2-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 80 с.	10	16	-
4.	Раздел 5. Основы теории напряженного и деформированного состояния.		10	16	-
5.	Тема 10. Напряжение в точке твердого тела. Тема 11. Определение главных напряжений. Тема 12. Линейное напряженное состояние. Тема 13. Плоское напряженное состояние.	1. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 1-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 76 с. 2. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 2-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 80 с.	10	16	-
6.		. Теории прочности.	10	16	-

7. Тема 14. Состояние вопроса. Тема 15. Закономерности деформирования и разрушения материала. Тема 16. Классические теории прочности. Тема 17. Теория Мора.	1. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 1-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 76 с. 2. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 2-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 80 с.	10	16	_
Раздел 7.	Сдвиг. Срез. Смятие	10	16	-
Тема 18. Допускаемые напряжения при сдвиге. Тема 19. Срез и смятие.	1. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 1-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 76 с. 2. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 2-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 80 с.	10	16	-
Pa3	дел 8. Кручение	10	16	-
Тема 22. Напряжения и деформации при кручении. Условия прочности и жесткости при кручении. Тема 23. Расчет валов на прочность и жесткость при кручении. Тема 24. Расчет на прочность цилиндрических винтовых пружин.	1. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 1-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 76 с. 2. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 2-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 80 с.	10	16	-
			1	1

	Всего	101	162	-
Тема 29. Совместное действие кручения и изгиба. Раздел 11. Продольный изгиб. Тема 30. Понятие об устойчивом и неустойчивом равновесиях стержня. Критическая сила. Формула Эйлера.	1. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 1-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 76 с. 2. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 2-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 80 с.	1	16	-
Раздел 10. Сложное сопротивление.			18	-
Тема 25. Построение эпюр поперечных сил и изгибающих моментов. Тема 26. Расчет на прочность при изгибе. Тема 27. Полный расчет балок на прочность при изгибе. Тема 28. О рациональной форме сечения.	1. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 1-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 76 с. 2. Евсюков В.А. Сопротивление материалов. Учебно-методическое пособие (Часть 2-я)/Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А Луганск: ГОУ ЛНР ЛНАУ, 2022 80 с.	10	16	-

4.6.5. Другие виды самостоятельной работы студентов.

Не предусмотрены

4.7. Перечень тем и видов занятий, проводимых в интерактивной форме Не предусмотрены

5. Фонд оценочных средств для текущего контроля и промежуточной аттестации

Полное описание фонда оценочных средств для текущего контроля и промежуточной аттестации обучающихся с перечнем компетенций, описанием показателей и критериев оценивания компетенций, шкал оценивания, типовые контрольные задания и методические материалы представлены в Приложении 3 к настоящей программе.

6. Учебно-методическое обеспечение дисциплины

6.1. Рекомендуемая литература

6.1.1. Основная литература

№ п/п	Автор, название, место издания, изд-во, год издания, количество	Кол-во экз.	
	страниц	в библ.	
1.	1. Беляев А.Н. Сопротивление материалов: учебное пособие для студентов высших учебных заведений, обучающихся по направлению «Агроинженерия»/А.Н. Беляев, В.В. Шередекин. — 2013.		
2.	Вольмир А.С. Сопротивление материалов: учебник для студентов высших учебных заведений/А.С. Вольмир, Ю.П. Григорьев, А.И. Станкевич. – 2007.		
3.	Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А. Сопротивление материалов. Учебно-методическое пособие для выполнения расчетно-графических работ (Часть 1-я). – Луганск: ГОУ ЛНР ЛНАУ, 2022. – 76 с.		
4.	Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А. Сопротивление материалов. Учебно-методическое пособие для выполнения расчетно-графических работ (Часть 2-я). – Луганск: ГОУ ЛНР ЛНАУ, 2022. – 80 с.	10	

6.1.2. Дополнительная литература

№ п/п	Автор, название, место издания, изд-во, год издания, количество страниц
1.	Евсюков В.А. Конспект лекций с примерами типичных расчетов. Учебно-
	методическое пособие. Часть І. – Луганск: ГОУ ЛНР ЛНАУ, 2023. – 80 с.
2.	Евсюков В.А. Конспект лекций с примерами типичных расчетов. Учебно-
	методическое пособие. Часть II. – Луганск: ГОУ ЛНР ЛНАУ, 2023. – 88 с.

6.1.3. Периодические издания

Не предусмотрены

6.1.4. Методические указания для обучающихся по освоению дисциплины

№ п/п	Автор, название, место издания, изд-во, год издания, количество страниц		
	Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А. Сопротивление		
1.	материалов. Учебно-методическое пособие для выполнения расчетно-графических		
	работ (Часть 1-я). – Луганск: ГОУ ЛНР ЛНАУ, 2022. – 76 с.		
	Евсюков В.А., Богданов Е.В., Овсиенко Г.М., Старощук Т.А. Сопротивление		
2.	материалов. Учебно-методическое пособие для выполнения расчетно-графических		
	работ (Часть 2-я). – Луганск: ГОУ ЛНР ЛНАУ, 2022. – 80 с.		
2	Евсюков В.А. Конспект лекций с примерами типичных расчетов. Учебно-		
3.	методическое пособие. Часть І. – Луганск: ГОУ ЛНР ЛНАУ, 202380 с.		
4.	Евсюков В.А. Конспект лекций с примерами типичных расчетов. Учебно-		
	методическое пособие. Часть II. – Луганск: ГОУ ЛНР ЛНАУ, 2023. – 88 с.		

6.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» (далее - сеть «Интернет»), необходимых для освоения дисциплины

№ п/п						
	Федеральный портал «Российское образование». [Электронный ресурс]. URL: https://www.edu.ru/					
2.	Всероссийский институт научной и технической информации [Электронный ресурс]. URL: http://elibrary.ru/defaultx.asp (дата обращения: 01.06.2024).					
3.	Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/					
4.	Научная электронная библиотека [Электронный ресурс]. Режим доступа: http://www2.viniti.ru/					
5	Научная поисковая система Scirus, предназначенная для поиска научной информации в научных журналах, персональных страницах ученых, сайтов университетов на английском и русском языках. [Электронный ресурс]. URL: http://www.scirus.com/					
6.	Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. Режим доступа: http://elanbook.com/books/					
7.	Электронная библиотека «Наука и техника»: книги, статьи из журналов, биографии. [Электронный ресурс]. Режим доступа: http://n-t.ru/					
8.	Полнотекстовые электронные библиотеки [Электронный ресурс]. Режим доступа: http://www.aonb.ru/iatp/guide/library.html					
9.	Электронно-библиотечная система «Университетская библиотека онлайн». [Электронный ресурс]. URL: https://biblioclub.ru/					
10.	Информационная система «Единое окно доступа к образовательным ресурсам». Электронный ресурс]. URL: http://window.edu.ru/					
	Научная электронная библиотека «e-Library». [Электронный ресурс]. URL: <u>https://elibrary.ru/</u>					

6.3. Средства обеспечения освоения дисциплины.

6.3.1. Компьютерные обучающие и контролирующие программы

№	Вид учебного	Наименование программного	Функция пр	ограммного	обеспечения
п/п	занятия	обеспечения	контроль	моделиру ющая	обучающая
1.	Лекции	Open Office 2010 Std	+	+	+
		MOODLE			
2.	Практические	Open Office 2010 Std.	+	+	+
		MOODLE			

6.3.2. Аудио - и видеопособия

№ п/п	Вид пособия	Наименование	
1.	1. видео Лекции Тычина К.А		
2.	видео	Лекции. Макеева С.А.	
3.	3. видео iSopromat		

6.3.3. Компьютерные презентации учебных курсов.

Не предусмотрены

7. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Л П/	_ '	Перечень основного оборудования, приборов и материалов
1	Лекционная аудитория 1c-201	доска, трибуна, столы
2	Учебная аудитория 3с-304	Стол – 14 шт, стулья – 28 шт, доска – 1шт, трибуна -1 шт, рециркулятор

8. Междисциплинарные связи Протокол согласования рабочей программы с другими дисциплинами

Наименование дисциплины, с которой проводилось согласование	Кафедра, с которой проводилось согласование	Предложения об изменениях в рабочей программе. Заключение об итогах согласования
Математика	Кафедра информационных технологий математики и физики	согласовано
Физика	Кафедра информационных технологий математики и физики	согласовано
Теоретическая механика	Кафедра сопротивления материалов и теоретической механики	согласовано
Материаловедение	Технический сервис в АПК	согласовано

Приложение 1

Лист изменений рабочей программы

Номер изменения	Номер протокола заседания кафедры и дата	Страницы с изменениями	Перечень откорректированных пунктов	Подпись заве- дующего кафедрой

Приложение 2 Лист периодических проверок рабочей программы

Должностное лицо, проводившее проверку Ф.И.О., должность,	Дата	Потребность в корректировке	Перечень пунктов, стр., разделов, требующих изменений

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ К.Е. ВОРОШИЛОВА»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Сопротивление материалов» Направление подготовки: 05.03.06. «Агроинженерия»

Направленность (профиль): «Технические системы в агробизнесе»

Уровень профессионального образования: бакалавриат

Год начала подготовки: 2025

Луганск - 2025

1. ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ, СООТНЕСЕННЫХ С ИНДИКАТОРАМИ ДОСТИЖЕНИЯ КОМПЕТЕНЦИЙ, С УКАЗАНИЕМ ЭТАПОВ ИХ ФОРМИРОВАНИЯ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Код	Формулиро	Индикаторы	Этап	Планируемые результаты	Наименование модулей и (или)	Наиме	нование
контро-	вка	достижения	(уровень)	обучения	разделов дисциплины	оценочно	го средства
лируемо	контролиру	компетенции	освоения			Текущий	Промежуточ
й	емой		компетен			контроль	ная
компете	компетенци		ции				аттестация
нции	И						
ПК - 2	Способен участвовать в	ПК - 2.2 Производит расчеты при	Первый этап (порогов ый	Знать: механические свойства и характеристики материалов и методику их	Модуль 1. «Основы расчета на прочность и жесткость при простых видах деформации»	Тесты закрытого типа	Экзамен
	проектиров	проектирова-		определения; теорию	Модуль 2. «Основы расчета на		
	ании	нии	уровень)	расчета геометрических	прочность, жесткость и устойчивость		
	технически	технических		характеристик плоских	при сложных видах деформации»		
	х систем	систем,		поперечных сечений			
	обеспечени	систем		брусьев;			
	Я	технического					
	технологиче	обслуживани	Второй	уметь: определять	Модуль 1. «Основы расчета на	Тесты	Экзамен
	ских процессов сель скохозяйств енного производств а	я сельскохозяй ственной техники	этап (продвину тый уровень)	внутренние силовые факторы при различных видах деформаций элементов конструкций и строить их эпюры; выбирать материал деталей в зависимости от характера нагружения и условий эксплуатации машин;	прочность и жесткость при простых видах деформации» Модуль 2. «Основы расчета на прочность, жесткость и устойчивость при сложных видах деформации»	открытого типа (вопросы для опроса)	

Код контро-	Формулиро вка	Индикаторы достижения	Этап (уровень)	Планируемые результаты обучения	Наименование модулей и (или) разделов дисциплины		енование ого средства
лируемо й компете нции	контролиру емой компетенци и	компетенции	освоения компетен ции	OOY TOTAL	разделов дисциплины	Текущий контроль	Промежуточ ная аттестация
			Третий этап (высокий уровень)	иметь навыки: владения методикой расчета статически определимых и статически неопределимых конструкций; экспериментального определения напряжений и деформаций в деталях;	Модуль 1. «Основы расчета на прочность и жесткость при простых видах деформации» Модуль 2. «Основы расчета на прочность, жесткость и устойчивость при сложных видах деформации»	Практичес кие задания	Экзамен
		ПК- 2.3 Способен участвовать в проектирова нии техниче- ских систем обеспечения технологиче ских процес- сов сельско- хозяйствен- ного произ- водства	Первый этап (пороговы й уровень)	Знать: расчетные формулы напряжений и деформаций для различных видов деформаций с учетом вида нагружения элементов конструкций (условия прочности, жесткости и устойчивости); основы назначения допускаемых напряжений и коэффициента запаса прочности; условия проведения опытных исследований механических свойств материалов;	Модуль 1. «Основы расчета на прочность и жесткость при простых видах деформации» Модуль 2. «Основы расчета на прочность, жесткость и устойчивость при сложных видах деформации»	Тесты закрытого типа	Экзамен

Код контро-	Формулиро вка	Индикаторы достижения	Этап (уровень)		Наименование модулей и (или) разделов дисциплины		енование ого средства
лируемо й компете нции	контролиру емой компетенци и	компетенции	освоения компетен ции	Планируемые результаты обучения	• • • • • • • • • • • • • • • • • • • •	Текущий контроль	Промежуточ ная аттестация
			Второй этап (продвину тый уровень)	уметь: производить расчеты на прочность, жесткость и устойчивость элементов машин и оборудования; пользоваться терминологией дисциплины; пользоваться нормативно технической документацией;	Модуль 1. «Основы расчета на прочность и жесткость при простых видах деформации» Модуль 2. «Основы расчета на прочность, жесткость и устойчивость при сложных видах деформации»	Тесты открытого типа (вопросы для опроса)	Экзамен
			Третий этап (высокий уровень)	иметь навыки владения прикладными методами проведения проверочных расчетов, проектных расчетов и определения несущей способности конструкций; способами сопоставительного анализа опытных данных.	Модуль 1. «Основы расчета на прочность и жесткость при простых видах деформации» Модуль 2. «Основы расчета на прочность, жесткость и устойчивость при сложных видах деформации»	Практичес кие задания	Экзамен

2. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАПАХ ИХ ФОРМИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

№ п/ п	Наимено вание оценочн ого средства	Краткая характеристика оценочного средства	Представлени е оценочного средства в фонде	Критерии оценивания	Шкала оценивания
1.	Тест	Система стандартизирован ных заданий, позволяющая	Тестовые задания	В тесте выполнено 90-100% заданий В тесте выполнено более 75-	Оценка «Отлично» (5) Оценка
		измерить уровень знаний.		89% заданий В тесте выполнено 60-74% заданий	«Хорошо» (4) Оценка «Удовлетвор ительно» (3)
				В тесте выполнено менее 60% заданий	Оценка «Неудовлетво рительно» (2)
				Большая часть определений не представлена, либо представлена с грубыми ошибками.	Оценка «Неудовлетво рительно» (2)
2.	Опрос	Форма работы, которая позволяет оценить кругозор, умение логически построить ответ, умение	Вопросы к опросу	Продемонстрированы предполагаемые ответы; правильно использован алгоритм обоснований во время рассуждений; есть логика рассуждений.	Оценка «Отлично» (5)
		продемонстриров ать монологическую речь и иные коммуникативные навыки. Устный опрос обладает		Продемонстрированы предполагаемые ответы; есть логика рассуждений, но неточно использован алгоритм обоснований во время рассуждений и не все ответы полные.	Оценка «Хорошо» (4)
		большими возможностями воспитательного воздействия, создавая условия для неформального общения.		Продемонстрированы предполагаемые ответы, но неправильно использован алгоритм обоснований во время рассуждений; отсутствует логика рассуждений; ответы не полные.	Оценка «Удовлетвор ительно» (3)
				Ответы не представлены.	Оценка «Неудовлетво рительно» (2)
3.	Практи ческие задания	Направлено на овладение методами и методиками изучаемой дисциплины. Предлагается решить	Практические задания	Продемонстрировано свободное владение профессионально-понятийным аппаратом, владение методами и методиками дисциплины. Показаны способности	Оценка «Отлично» (5)

№ п/ п	Наимено вание оценочн ого средства	Краткая характеристика оценочного средства	Представлени е оценочного средства в фонде	Критерии оценивания	Шкала оценивания
		конкретное задание без применения		мышления, творческой активности. Задание выполнено в полном объеме.	
		математических расчетов.		Продемонстрировано владение профессионально-понятийным аппаратом, при применении методов и методик дисциплины незначительные неточности, показаны способности самостоятельного мышления, творческой активности. Задание выполнено в полном объеме, но с некоторыми	Оценка «Хорошо» (4)
				неточностями. Продемонстрировано владение профессионально- понятийным аппаратом на низком уровне; допускаются ошибки при применении методов и методик дисциплины. Задание выполнено не полностью.	Оценка «Удовлетвор ительно» (3)
				Не продемонстрировано владение профессионально-понятийным аппаратом, методами и методиками дисциплины. Задание не выполнено.	Оценка «Неудовлетво рительно» (2)
4.	РГР	Направлено на овладение методами и методиками изучаемой дисциплины. Предлагается решить конкретное задание с применением математических расчетов.	Расчетно- графические работы	Показаны способности самостоятельного мышления, творческой активности. Задание выполнено в полном объеме.	
4.	Экзамен	Контрольное мероприятие, которое проводится по окончании изучения	Вопросы к экзамену	Показано знание теории вопроса, понятийно-терминологического аппарата дисциплины; умение анализировать проблему, содержательно и	Оценка «Отлично» (5)

Шкала оценивания
Оценка
«Хорошо» (4)
Оценка
«Удовлетвор
ительно» (3)
« ?

№	Наимено	Краткая	Представлени	Критерии оценивания	Шкала
Π/	вание	характеристика	е оценочного		оценивания
П	оценочн	оценочного	средства в		
	ого	средства	фонде		
	средства				
				Владение аналитическим	
				способом изложения	
				вопроса и владение	
				навыками аргументации не	
				продемонстрировано.	
				Обучающийся допустил	
				существенные ошибки при	
				ответах на вопросы билетов	
				и вопросы экзаменатора.	
				Знание понятийного	Оценка
				аппарата, теории вопроса, не	«Неудовлетво
				продемонстрировано;	рительно» (2)
				умение анализировать	
				учебный материал не	
				продемонстрировано;	
				владение аналитическим	
				способом изложения	
				вопроса и владение	
				навыками аргументации не	
				продемонстрировано.	
				Обучающийся не ответил	
				на один или два вопроса	
				билета и дополнительные	
				вопросы экзаменатора.	

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Оценочные средства для проведения текущего контроля

Текущий контроль осуществляется преподавателем дисциплины при проведении занятий в форме тестовых заданий, устного опроса и практических заданий.

- ПК 2. Способен участвовать в проектировании технических систем обеспечения технологических процессов сельскохозяйственного производства.
 - ПК 2.2. Производит расчеты при проектировании технических систем, систем технического обслуживания сельскохозяйственной техники.

Первый этап (пороговой уровень) — показывает сформированность показателя компетенции «знать»: механические свойства и характеристики материалов, методики их определения; теорию расчета геометрических характеристик плоских поперечных сечений брусьев.

Тестовые задания закрытого типа

- 1. Продольная сила, действующая в данном поперечном сечении бруса, равна...(выберите один вариант ответа)
- а) векторной сумме всех внешних сил, действующих по одну сторону от данного; сечения на продольную ось бруса;
- б) алгебраической сумме проекций всех внешних сил, действующих по обе стороны от данного сечения на продольную ось бруса;
- в) алгебраической сумме проекций всех внешних сил, действующих по одну сторону от данного сечения на продольную ось бруса;
- г) векторной сумме всех внешних сил, действующих по обе стороны от данного сечения на продольную ось бруса;
- д) алгебраической сумме проекций всех внешних и внутренних сил, действующих по одну сторону от данного сечения на продольную ось бруса;
- 2. Поперечная сила, действующая в данном поперечном сечении бруса, равна...(выберите один вариант ответа);
- а) векторной сумме все внешних сил, действующих по одну сторону от данного сечения на одну из главных центральных осей инерции сечения;
- б) алгебраической сумме проекций все внешних сил, действующих по обе стороны от данного сечения на одну из главных центральных осей инерции сечения;
- в) векторной сумме все внешних сил, действующих по обе стороны от данного сечения на одну из главных центральных осей инерции сечения;
- г) алгебраической сумме проекций все внешних сил, действующих по одну сторону от данного сечения на одну из главных центральных осей инерции сечения;
- д) алгебраической сумме проекций всех внешних и внутренних сил, действующих по одну сторону от данного сечения на продольную ось бруса.
- 3. Крутящий момент, действующий в данном поперечном сечении бруса, равен...(выберите один вариант ответа)
- а) алгебраической сумме моментов, действующих по обе стороны от данного сечения, относительно поперечной оси бруса;
- б) алгебраической сумме моментов, действующих по одну сторону от данного сечения, относительно продольной оси бруса;
- в) алгебраической сумме моментов, действующих по обе стороны от данного сечения, относительно продольной оси бруса;
- г) алгебраической сумме моментов, действующих по одну сторону от данного сечения, относительно поперечной оси бруса;
- д) векторной сумме моментов, действующих по одну сторону от данного сечения, относительно продольной оси бруса.
- 4. Изгибающий момент, действующий в данном поперечном сечении бруса, равен...(выберите один вариант ответа)
- а) алгебраической сумме моментов внешних сил, действующих по одну сторону от данного сечения относительно одной из главных центральных осей инерции сечения;
- б) алгебраической сумме моментов всех внешних сил, действующих по обе стороны от данного сечения относительно одной из главных центральных осей инерции сечения;
- в) векторной сумме моментов всех внешних сил, действующих по обе стороны от данного сечения относительно одной из главных центральных осей инерции сечения;
- г) векторной сумме моментов всех внешних сил, действующих по одну сторону от данного сечения относительно одной из главных центральных осей инерции сечения;
- д) алгебраической сумме моментов внешних сил, действующих по одну сторону от данного сечения относительно двух главных центральных осей инерции сечения.

5. Прямым чистым изгибом называется такой вид нагружения бруса, при котором в его поперечных сечениях возникает только один внутренний силовой фактор...(выберите один вариант ответа)

- а) изгибающий момент;
- б) крутящий момент;
- в) изгибающий момент, поперечная сила и крутящий момент;
- г) поперечная сила;
- д) изгибающий момент и поперечная сила.

Ключи

1	a
2	б
3	В
4	Γ
5	Д

6. Прочитайте текст и установите соответствие между схемой и видом деформации

Схема деформации	Виды деформации
1.	а) кручение
2.	б) изгиб
3.	в) изгиб + кручение
4.	г) растяжение
5.	д) изгиб + сжатие

Ключи

1	2	3	4	5
Д	a	В	Γ	Д

Второй этап (продвинутый уровень) — показывает сформированность показателя компетенции «уметь»: определять внутренние силовые факторы при различных видах деформаций элементов конструкций и строить их эпюры; выбирать материал деталей в зависимости от характера нагружения и условий эксплуатации машин.

Задания открытого типа (вопросы для опроса)

- 1. Вид нагружения бруса при котором, кроме изгибающего момента в поперечном сечении бруса возникает поперечная сила, называется...
- 2. Плоскость, в которой действуют внешние нагрузки, называется...
- 3. Прямолинейный брус, работающий на изгиб, называется...
- 4. Прямолинейный брус работающий на кручение, называется...
- 5. Прямолинейный брус, работающий на растяжение (сжатие) называется...

Ключи

1.	поперечным изгибом
2.	силовой плоскостью
3.	балкой
4.	валом
5.	стержнем

Третий этап (высокий уровень) — показывает сформированность показателя компетенции «иметь навыки»: владения прикладными методиками расчета статически определимых и статически неопределимых конструкций; методами экспериментального определения напряжений и деформаций в деталях.

Практические задания:

- 1. Проверить прочность стального круглого стержня диаметром d=30,91мм, растягиваемого силой F=120 кH, если допускаемое нормальное напряжение материала стержня $\lceil 6 \rceil = 160$ МПа.
- 2. Из условия прочности на растяжение определить необходимый диаметр стального стержня, растянутого силой $F=120~\mathrm{kH}$, если допускаемое нормальное напряжение материала стержня [σ] = $160~\mathrm{MHa}$.
- 3. Из условия прочности на растяжение определить диаметр каждого из двух болтов, соединяющий обе части разъемной головки шатуна, если усилие, действующее в шатуне F = 12.8 кH, а допускаемое напряжение равно $[\sigma] = 60 \text{ M}\Pi a$.
- 4. К нижнему концу троса, закрепленным верхним концом, подвешен груз
- F = 30 кH. Трос составлен из проволок диаметром d = 2 мм. Допускаемое нормальное напряжение [6] =120 МПа. Из условия прочности на растяжение определить из какого количества проволок должен быть составлен трос?
- 5. Круглый стержень диаметром d = 20 мм и длиной l = 2 м растягивается силой
- F=8 кH. Модуль упругости материала $E=1,02\cdot 10^5$ МПа. Определить величину деформации стержня Δl .

Ключи

1.	Условие прочности при растяжении (сжатии) проверяем по формуле:
	$\sigma = \frac{F}{A} \le [\sigma],$
	где: σ – расчетное значение нормального напряжения, МПа;
	F – растягивающая сила, H;
	А – площадь поперечного сечения стержня, мм ² ;
	[σ] - допускаемое нормальное напряжение, МПа.
	Подставляя исходные данные в формулу получим
	$\sigma = \frac{F}{A} = \frac{4 \cdot F}{\pi D^2} = \frac{4 \cdot 12 \cdot 10^4}{3,14 \cdot 30,91^2} = 160 \text{ M}\Pi \text{a} = [\sigma] = 160 \text{ M}\Pi \text{a}.$
	Сокращенный вариант ответа: [6] = 160 МПа.
	Условие прочности выполняется.
2.	Подставляя в условие прочности на растяжение (сжатие):
	$\sigma = \frac{F}{A} \le [\sigma],$
	где: σ – расчетное значение нормального напряжения, МПа;

F – растягивающая сила, H;

A – площадь поперечного сечения стержня, мм²;

[σ] - допускаемое нормальное напряжение, МПа,

значение площади поперечного сечения стержня:

$$A=\frac{\pi d^2}{4},$$

определяем величину его диаметра по формуле:

$$d = \sqrt{\frac{4F}{\pi[\sigma]}}.$$

Подставляя исходные данные в формулу получим

$$d = \sqrt{\frac{4F}{\pi[\sigma]}} = \sqrt{\frac{4 \cdot 12 \cdot 10^4}{3,14 \cdot [160]}} = 30,91 \text{ мм.}$$

Сокращенный вариант ответа: d = 30,91 мм.

3. Подставляя в условие прочности на растяжение (сжатие):

$$\sigma = \frac{F}{A} \le [\sigma],$$

где: σ – расчетное значение нормального напряжения, МПа;

F – растягивающая сила, H;

A – площадь поперечного сечения стержня, мм²;

[σ] - допускаемое нормальное напряжение, МПа, значение площади поперечного сечения двух болтов:

$$A=2\frac{\pi d^2}{4},$$

определяем величину их диаметра по формуле:

$$d = \sqrt{\frac{2F}{\pi \cdot \sigma}}.$$

Подставляя исходные данные в формулу получим

$$d = \sqrt{\frac{2F}{\pi \cdot \sigma}} = \sqrt{\frac{2 \cdot 12,8 \cdot 10^3}{3,14 \cdot 60}} = 11,66 \text{ mm}.$$

Сокращенный вариант ответа: d = 11,66 мм.

4. Из условия прочности на растяжение (сжатие):

$$\sigma = \frac{F}{A} \le [\sigma],$$

где: σ – расчетное значение нормального напряжения, МПа;

F – растягивающая сила, H;

A – площадь поперечного сечения стержня, мм²;

[σ] - допускаемое нормальное напряжение, МПа.

Подставляя в эту формулу значение площади поперечного сечения n-го количества проволок:

$$A=n\frac{\pi d^2}{4}n,$$

определяем их количество по формуле:

	$4 \cdot F$
	$n = \frac{1}{\pi d^2 \cdot [\sigma]}.$
	Подставляя исходные данные в формулу получим
	$n = \frac{4 \cdot F}{\pi d^2 \cdot [\sigma]} \cdot = \frac{4 \cdot 30 \cdot 10^3}{3.14 \cdot 2^2 \cdot 120} \approx 80 \text{ шт.}$
	Сокращенный вариант ответа: n = 80 шт.
5.	Величину деформации стержня Δl определим из закона Γ ука:
	$\sigma = E \cdot arepsilon$, или $\sigma = E rac{\Delta l}{l}$.
	где: σ – расчетное значение нормального напряжения, МПа;
	ε – относительное удлинение стержня;
	$E = 1,02 \cdot 10^5$ - модуль упругости 1-го рода (модуль Юнга);
	F – растягивающая сила, H.
	Учитывая, что нормальное напряжение можно определить также по формуле:
	F
	$\sigma = \frac{F}{A}$.
	То приравнивая оба выражения:
	$\frac{F}{A} = E \frac{\Delta l}{l}$
	откуда определяем величину деформации стержня по формуле:
	$\Delta l = \frac{Fl}{FA}$.
	Подставляя исходные данные в формулу получим
	$4 \cdot F \cdot l \qquad 4 \cdot 8 \cdot 10^3 \cdot 2 \cdot 10^3$
	$\Delta l = rac{4 \cdot F \cdot l}{E \cdot \pi d^2} = rac{4 \cdot 8 \cdot 10^3 \cdot 2 \cdot 10^3}{1,02 \cdot 10^5 \cdot 3,14 \cdot 20^2} = 0,5$ mm.
	Сокращенный вариант ответа: $\Delta l = 0,5$ мм.

ПК 2.3 Способен участвовать в проектировании технических систем обеспечения технологических процессов сельскохозяйственного производства.

Первый этап (пороговой уровень) — показывает сформированность показателя компетенции «знать»: расчетные формулы напряжений и деформаций для различных видов деформаций с учетом вида нагружения элементов конструкций (условия прочности, жесткости и устойчивости); основы назначения допускаемых напряжений и коэффициента запаса прочности; условия проведения опытных исследований механических свойств материалов.

Тестовые задания закрытого типа

1. Поперечная сила, действующая на балку, считается положительной, если она...(выберите один вариант ответа)

- а) стремится повернуть отсеченную часть балки против часовой стрелки;
- б) стремится повернуть отсеченную часть балки по часовой стрелке;
- в) положительный момент растягивает только верхние волокна;
- г) положительный момент растягивает только нижние волокна;
- д) положительный момент растягивает нижние волокна и сжимает верхние.

2. Момент, действующий на балку, считается положительным, если он...(выберите один вариант ответа)

- а) растягивает только верхние волокна;
- б) растягивает только нижние волокна;
- в) растягивает верхние волокна и сжимает нижние;
- г) растягивает нижние волокна и сжимает верхние;
- д) растягивает и нижние волокна и верхние.

3. Оболочкой называется конструктивный элемент, у которого...(выберите один вариант ответа)

- а) одно из измерений существенно меньше двух других;
- б) одно из измерений которого существенно больше двух других;
- в) все три измерения, которого величины одного порядка;
- г) все три измерения, которого равны между собой;
- д) все три измерения, которого не равны между собой.

4. Массивом называется конструктивный элемент, у которого...(выберите один вариант ответа)

- а) все три измерения, которого величины одного порядка;
- б) одно из измерений, которого существенно меньше двух других;
- в) одно из измерений, которого существенно больше двух других;
- г) все три измерения, которого равны между собой;
- д) г) все три измерения, которого не равны между собой.

5. Центральной осью называется...(выберите один вариант ответа)

- а) ось, относительно которой осевой момент инерции сечения равен нулю;
- б) ось, относительно которой полярный момент инерции сечения равен нулю;
- в) ось, относительно которой центробежный момент сечения равен нулю;
- г) ось, относительно которой статический момент сечения равен нулю.
- д) ось, относительно которой статический момент сечения не равен нулю.

Ключи

1	2	3	4	5
б	Γ	a	a	Γ

6. Прочитайте текст и установите соответствие между видами элементов конструкции и классификацией по геометрическому признаку.

Виды элементов конструкций	Классификация элементов конструкций по	
	геометрическому признаку	
	а) оболочка	
2.	б) брус	
3.	в) массив	
4.	г) пластина	

Ключи

1	2	3	4
б	a	Γ	В

Второй этап (продвинутый уровень) – показывает сформированность показателя компетенции «уметь»: производить расчеты на прочность, жесткость и устойчивость элементов машин и оборудования; пользоваться терминологией дисциплины; пользоваться нормативно-технической документацией.

Задания открытого типа (вопросы для опроса)

- 1. Приведенная формула $\sigma_{max} = \frac{N}{A} \leq [\sigma]$ выражает условие прочности при ...
- 2. Приведенная формула $\sigma_{\rm cp} = \frac{Q}{A} \leq [\sigma_{\rm cp}];$ выражает условие прочности на ...
- 3. Приведенная формула $\sigma_{\text{см}} = \frac{Q}{A} \leq [\sigma_{\text{см}}];$ выражает условие прочности на ... 4. Приведенная формула $\tau_{max} = \frac{\tau_{max}}{W_p} \leq [\tau];$ выражает условие прочности при ...
- 5. Приведенная формула $\sigma_{max} = \frac{M_{max}}{W_{H,n}} \le [\sigma]$ выражает условие прочности по ...

Ключи

1.	растяжении (сжатии)
2.	срез
3.	смятие
4.	кручении
5.	нормальным напряжениям изгиба

Третий этап (высокий уровень) – показывает сформированность компетенции «иметь навыки»: владения прикладными проведения проверочных и проектных расчетов и определения несущей способности конструкций; способами сопоставительного анализа опытных данных.

Практические задания:

- 1. Вал диаметром d = 5 см совершает n = 120 об/мин. Какова предельная передаваемая мощность Р, если допускаемые касательные напряжения равны [τ] = 60 МПа?
- 2. Вал диаметром d = 50 мм передает мощность P = 18,488 кВт. Определить предельное число оборотов, если допускаемое касательное напряжение равно $[\tau] = 60 \text{ M}\Pi a$?
- 3. Определить из условия прочности диаметр сплошного вала, передающего крутящий момент T = 10 кНм. если допускаемое касательное напряжение $[\tau_{\kappa}] = 80$ МПа.
- 4. Определить из условия жесткости диаметр сплошного вала, передающего крутящий момент T=15 кHм, если допускаемый угол закручивания $[\theta^{\circ}] = 0.5 \cdot 10^{-3}$ град/м, модуль сдвига $G = 8.10^4 M\Pi a$, а отношение c = d/D = 0.6.
- 5. Определить из условия жесткости диаметры вала кольцевого сечения, передающего крутящий момент T = 15 кНм, если допускаемый угол закручивания $[\theta^{\circ}] = 0.5 \cdot 10^{-3}$ град/м, модуль сдвига $G = 8 \cdot 10^4$ МПа, а отношение c = d/D = 0,6.Ответ: D = 125,5 мм, d = 75,3 мм.

1. Подставляя в условие прочности при кручении:

$$\tau = \frac{|T_{max}|}{W_p} \le [\tau],$$

где: т – касательное напряжение, МПа;

 $|T_{max}|$ – максимальный внешний скручивающий момент, Нм;

 W_p – полярный момент сопротивления, мм³;

[т] - допускаемое касательное напряжение, МПа,

значение полярного момента сопротивления сечения стержня:

$$W_p = \frac{\pi d^3}{16},$$

определим величину допускаемого внешнего скручивающего момента по формуле:

$$[T] = \frac{\pi d^3}{16} [\tau].$$

где: d – диаметр вала.

Подставляя исходные данные в формулу получим значение допускаемого внешнего скручивающего момента:

$$[T] = \frac{3.14 \cdot 50^3}{16} \cdot 60 = 1471875 \text{ Hmm} = 1472 \text{ Hm}.$$

Предельную передаваемую мощность определяем по формуле:

$$P = [T] \cdot \omega$$
.

где: ω – угловая скорость вала, определяемая по формуле:

Подставляя исходные данные в формулу получим

$$\omega = \frac{3,14 \cdot 120}{30} = 12,56 \, c^{-1}.$$

$$P = 1472 \cdot 12,56 = 18488 \text{ Bt.}$$

Сокращенный вариант ответа:

$$P = 18488 \text{ Bt.}$$

2. Подставляя в условие прочности при кручении:

$$\tau = \frac{|T_{max}|}{W_p} \le [\tau],$$

где: τ – касательное напряжение, МПа;

 $|T_{max}|$ – максимальный внешний скручивающий момент, Нм;

 W_p – полярный момент сопротивления, мм 3 ;

[т] - допускаемое касательное напряжение, МПа,

значение полярного момента сопротивления сечения стержня:

$$W_p = \frac{\pi d^3}{16},$$

определим величину допускаемого внешнего скручивающего момента по формуле:

$$[T] = \frac{\pi d^3}{16} [\tau].$$

где: d – диаметр вала.

Подставляя исходные данные в формулу получим значение допускаемого внешнего скручивающего момента:

$$[T] = \frac{3.14 \cdot 50^3}{16} \cdot 60 = 1471875 \text{ Hmm} = 1472 \text{ Hm}.$$

Предельная угловая скорость вала определяется по формуле:

$$\omega = \frac{P}{[T]}.$$

Где Р – передаваемая мощность.

Подставляя исходные данные в формулу получим предельную (допускаемую) угловую скорость:

$$[\omega] = \frac{18488}{1472} = 12,56 \text{ c}^{-1};$$

и предельную (допускаемую) частоту вращения вала, определяемую по формуле:

$$n=\frac{30\cdot\omega}{\pi}.$$

Подставляя исходные данные в формулу получим

$$n = \frac{30 \cdot 12,56}{3.14} = 120 \frac{\text{of}}{\text{мин}}.$$

Сокращенный вариант ответа: n = 120 об/мин.

3. Подставляя в условие прочности при кручении:

$$\tau = \frac{|T_{max}|}{W_n} \le [\tau],$$

где: т – касательное напряжение, МПа;

 $|T_{max}|$ – максимальный внешний скручивающий момент, Нм;

 W_p – полярный момент сопротивления, мм³;

[au] - допускаемое касательное напряжение, МПа,

значение полярного момента сопротивления сечения стержня:

$$W_p = \frac{\pi d^3}{16},$$

определим величину диаметра вала по формуле:

$$d = \sqrt[3]{\frac{16 \cdot T}{\pi \cdot [\tau_{\text{\tiny K}}]}}.$$

Подставляя исходные данные в формулу получим

$$d = \sqrt[3]{\frac{16 \cdot 10 \cdot 10^6}{3,14 \cdot 80}} = 100\sqrt[3]{0,6378} = 86 \text{ mm}.$$

Сокращенный вариант ответа: d = 86 мм.

4. Подставляя в условие жесткости при кручении:

$$\theta^{\circ} = \frac{180}{\pi} \cdot \frac{|T_{max}|}{GJ_p} \leq [\theta^{\circ}],$$

где: θ° – расчетный относительный угол закручивания, град/мм;

 $|T_{max}|$ — максимальный внешний скручивающий момент, Нм;

 J_p – полярный момент инерции сечения, мм 3 ;

G — модуль упругости 2-го рода;

 $[\theta^{\circ}]$ – допускаемый относительный угол закручивания, град/мм; значение полярного момента инерции сечения стержня:

$$J_p = \frac{\pi d^4}{32},$$

определим величину диаметра вала по формуле:

$$d = \sqrt[4]{\frac{32 \cdot 180 \cdot T}{\pi^2 \cdot G \cdot [\theta]^{\circ}}}.$$

Подставляя исходные данные в формулу получим

$$d = \sqrt[4]{\frac{32 \cdot 180 \cdot 15 \cdot 10^6}{10 \cdot 8 \cdot 10^4 \cdot 0,5 \cdot 10^{-3}}} = 122 \text{ MM}.$$

Сокращенный вариант ответа: d = 122 мм.

5. Подставляя в условие жесткости при кручении:

$$\theta^{\circ} = \frac{180}{\pi} \cdot \frac{|T_{max}|}{GJ_p} \leq [\theta^{\circ}],$$

где: θ ° – расчетный относительный угол закручивания, град/мм;

 $|T_{max}|$ – максимальный внешний скручивающий момент, Нм;

 J_p – полярный момент инерции сечения, мм 3 ;

G — модуль упругости 2-го рода;

 $[\theta^{\circ}]$ – допускаемый относительный угол закручивания, град/мм; значение полярного момента инерции кольцевого сечения стержня:

$$J_p = \frac{\pi {D_{\rm K}}^4}{32} (1 - c^4),$$
 где $c = {
m d/D}.$

определим величину внешнего и внутреннего диаметров вала по формулам:

$$D_{\mathrm{K}} = \sqrt[4]{\frac{32 \cdot 180 \cdot T}{\pi^2 \cdot G \cdot [\theta^{\circ}] \cdot (1 - c^4)}}.$$

Подставляя исходные данные в формулу получим значение внешнего диаметра

$$D_{\text{\tiny K}} = \sqrt[4]{\frac{32 \cdot 180 \cdot 15 \cdot 10^6}{10 \cdot 8 \cdot 10^4 \cdot [0.5 \cdot 10^{-3}] \cdot (1 - 0.6^4)}} = 125.5 \text{ mm}.$$

и значение внутреннего диаметра

$$d_{\kappa} = D_{\kappa} \cdot c = 125,5 \cdot 0,6 = 75,3 \text{ MM}.$$

Cокращенный вариант ответа: $D_{\rm K}=125$,5 мм, $d_{\rm K}=75$,3 мм.

Оценочные средства для проведения промежуточной аттестации Промежуточная аттестация проводится в форме устного экзамена.

Вопросы для экзамена

- 1. Определение и задачи курса «Механика материалов и конструкций».
- 2. Вычисление полярных моментов инерции и моментов сопротивления сечения вала. Рациональная форма сечения вала.
- 3. Классификация сил, действующих на элементы конструкций и детали. Объект и расчетная схема
- 4. Силы, напряжения и деформации. Метод сечений.
- 5. Основные гипотезы.
- 6. Принципы независимости действия сил (метод суперпозиции).
- 7. Механические свойства материалов. Диаграмма растяжения.
- 8. Геометрические характеристики плоских сечений. Статический момент инерции.
- 9. Осевые и полярный моменты инерции и моменты сопротивления различных фигур.
- 10. Растяжение и сжатие. Напряжения в поперечных сечениях при растяжении и сжатии.
- 11. Напряжения и деформации. Закон Гука.
- 12. Напряжения в сечениях с учетом собственного веса.
- 13. Продольные и поперечные деформации при растяжении и сжатии.
- 14. Определение осевых перемещений при растяжении (сжатии).
- 15. Построение эпюр и продольных сил нормальных напряжений и осевых перемещений.
- 16. Основы теории направленного и деформированного состояния. Напряжения в точке.
- 17. Линейное напряженное состояние.
- 18. Напряжения в наклонных сечениях.
- 19. Плоское напряженное состояние.
- 20. Главные площадки и главные напряжения.
- 21. Основы теории напряженного и деформированного состояния.
- 22. Прямая задача при плоском напряженном состоянии.
- 23. Нахождение главных напряжений при помощи круга Мора (обратная задача).
- 24. Чистый сдвиг. Напряжения и деформации при сдвиге.
- 25. Закон Гука при чистом сдвиге.
- 26. Абсолютная деформация при сдвиге.
- 27. Потенциальная энергия деформации.
- 28. Расчет сварных соединений.
- 29. Кручение. Понятие о кручении.
- 30. Деформации при кручении.
- 31. Условие прочности при кручении.
- 32. Построение эпюр крутящих моментов.
- 33. Напряжения в поперечных сечениях вала.
- 34. Распределение касательных напряжений в сечении.
- 35. Расчет цилиндрических винтовых пружин на прочность.
- 36. Расчет цилиндрических винтовых пружин на жесткость.
- 37. Изгиб. Основные понятия об изгибе.
- 38. Балки и их опоры. Виды опор.
- 39. Внешние силы и опорные реакции.
- 40. Определение внутренних силовых факторов в поперечных сечениях балок.
- 41. Правило знаков для силовых факторов при изгибе.
- 42. Дифференциальные зависимости между изгибающим моментом M, поперечной силой Q и интенсивностью нагрузки q.

- 43. Нормальные напряжения при чистом изгибе.
- 44. Построение эпюр изгибающих моментов и поперечных сил.
- 45. Закон распределения нормальных напряжений при изгибе.
- 46. Определение положения нейтральной оси при изгибе.
- 47. Определение наибольших напряжений и проверка прочности при изгибе.
- 48. Определение зависимости нормальных напряжений при изгибе от изгибающего момента и формы поперечного сечения бруса.
- 49. Касательные напряжения при изгибе. Формула Журавского Д.И.
- 50. Прогиб и поворот балки при изгибе.
- 51. Дифференциальное уравнение изогнутой оси балки.
- 52. Сложное сопротивление. Совместное действие изгиба и растяжения.
- 53. Сложное сопротивление. Совместное действие изгиба и кручения.
- 54. Понятий об устойчивости физические основы устойчивости.
- 55. Формула Эйлера Л. для критической силы и критического напряжения.
- 56. Устойчивость влияние закрепления концов стержня.
- 57. Пределы применимости формулы Эйлера. Формула Ясинского.
- 58. Проверка сжатых стержней на устойчивость. Выбор формы сечения и материала.

Задачи для экзамена

Задача №1. Проверить прочность стального стержня диаметром d=30,91мм, растягиваемого силой $F=12\tau$, если допускаемое нормальное напряжение материала стержня $[\sigma]=160$ МПа. Ответ: $\sigma_{max}=160$ МПа.

Задача №2. Из условия прочности на растяжение определить необходимый диаметр стального стержня, растянутого силой F = 12 т, если допускаемое нормальное напряжение материала стержня [σ] = 160 МПа. Ответ: d = 30,91 мм.

Задача №3. Из условия прочности на растяжение определить диаметр каждого из двух болтов, соединяющих обе части разъемной головки шатуна, если усилие, действующее в шатуне F = 12,8 кH, а допускаемое напряжение равно [σ] = 60 МПа. Ответ: d = 12 мм. Задача №4. К нижнему концу троса, закрепленным верхним концом, подвешен груз F = 3т. Трос составлен из проволок диаметром d = 2 мм. Допускаемое нормальное

F=3т. Трос составлен из проволок диаметром d=2 мм. Допускаемое нормальное напряжение $[\sigma]=120$ МПа. Из условия прочности на растяжение определить из какого количества проволок должен быть составлен трос? Ответ: n=80 проволок.

Задача №5. Закрепленная одним концом медная трубка растягивается внешней силой F. Определить допускаемую величину продольной силы N, если внешний и внутренний диаметры трубки равны D=10 мм и d=8 мм. Допускаемое нормальное напряжение материала трубки $[\sigma]=100$ МПа. Ответ: F=2,83 кН.

Задача №6. Круглый стержень диаметром d=20 мм и длиной l=2 м растягивается силой F=8 кН. Модуль упругости материала $E=1,02\cdot 10^5$ МПа. Определить величину деформации Δl . Ответ: $\Delta l=0,5$ мм.

Задача 7. К тросу диаметром d=10 мм и длиной l=100 м, подвешена клеть шахтного подъемника. Определить растяжение троса при загрузке клети рудой весом F=4 кH, если модуль упругости троса равен $E=1,7\cdot 10^5$ МПа. Ответ: $\Delta l=29,97$ мм ≈ 3 см.

Задача №8. К тросу длиной l=100 м, подвешена клеть шахтного подъемника. Определить диаметр троса D при загрузке клети рудой весом F=4 кH, если модуль упругости троса равен $E=1,7\cdot 10^5$ МПа, допускаемое нормальное напряжение [σ] = 120 МПа, а растяжение троса $\Delta l=3$ см. Ответ: D=10 мм.

Задача №9. Круглый стальной стержень кольцевого сечения длиной l = 200 мм, под действием сжимающей силы F стал короче на $\Delta l = 0,2$ мм. Внешний и внутренний

```
диаметры стержня равны D=40 мм и d=30 мм. Определить сжимающую силу стержня F, если модуль упругости E=2\cdot 10^5 МПа. Ответ: F=11 т.
```

Задача №10. Круглый стержень диаметром d=20 мм и длиной l=2 м растягивается силой F на величину $\Delta l=0.5$ мм. Модуль упругости материала $E=1.02\cdot 10^5$ МПа. Определить значение растягивающей силы F. Ответ: F=8 кH.

Задача №11. Медная проволока диаметром d = 1,2 мм удлиняется на $\Delta l = 0,25$ мм под нагрузкой F = 90 Н. Определить длину проволоки, если модуль упругости меди $E = 1,2\cdot10^5$ МПа. Ответ: l = 38 см.

Задача №12. Произвести проверку на прочность вала диаметром D=31,53 мм, передающего мощность P=51,52 кВт при частоте вращения n=1000 об/мин, если допускаемое касательное напряжение материала вала $[\tau_{\kappa}]=80$ МПа. Ответ: $\tau_{max}=80$ МПа. Задача №13. Определить из условия прочности диаметр вала, передающего мощность P=51,52 кВт при частоте вращения n=1000 об/мин, если допускаемое касательное напряжение материала вала $[\tau_{\kappa}]=80$ МПа. Ответ: D=31,53 мм.

Задача №14. Определить передаваемую валом мощность P при частоте вращения n=1000 об/мин, если допускаемое касательное напряжение материала вала $[\tau_{\kappa}]=80$ МПа, а диаметр вала равен D=31,53 мм. Ответ: P=51,52 кВт.

Задача №15. Произвести проверку на жесткость вала диаметром D = 43,4 мм, передающего мощность P = 51,52 кВт при частоте вращения n = 1000 об/мин, если допускаемый угол закручивания $[\theta^{\circ}] = 0,5 \cdot 10^{-3}$ град/мм. Модуль сдвига $G = 8 \cdot 10^{4}$ МПа. Ответ: $\theta^{\circ} = 1 \cdot 10^{-3}$ град/мм.

Задача №16. Определить из условия жесткости диаметр вала, передающего мощность $P = 51,52~\mathrm{kBT}$ при частоте вращения $n = 1000~\mathrm{oб/мин}$, если допускаемый угол закручивания $[\theta^\circ] = 1 \cdot 10^{-3}~\mathrm{град/m}$, а модуль сдвига $G = 8 \cdot 10^4~\mathrm{MПa}$. Ответ: $D = 43,4~\mathrm{mm}$. Задача №17. Определить передаваемую валом мощность P при частоте вращения $n = 1000~\mathrm{oб/muh}$, если допускаемый угол закручивания $[\theta^\circ] = 1 \cdot 10^{-3}~\mathrm{град/m}$, модуль сдвига $G = 8 \cdot 10^4~\mathrm{MПa}$, а диаметр вала равен $D = 43,4~\mathrm{mm}$. Ответ: $P = 51,62~\mathrm{kBT}$.

Задача №18. Произвести проверку на прочность вала кольцевого сечения с внешним диаметром D=33 мм, передающего мощность P=51,52 кВт при частоте вращения n=1000 об/мин, если допускаемое касательное напряжение материала вала $[\tau_{\kappa}]=80$ МПа, а отношение c=d/D=0,6. Ответ: $\tau_{max}=80$ МПа.

Задача №19. Определить из условия прочности диаметры вала кольцевого сечения, передающего мощность P = 51,52 кВт при частоте вращения n = 1000 об/мин, если допускаемое касательное напряжение материала вала $[\tau_{\kappa}] = 80$ МПа, а отношение c = d/D = 0,6. Ответ: D = 33 мм, d = 19,8 мм.

Задача №20. Определить мощность P, передаваемую валом кольцевого сечения при частоте вращения n=1000 об/мин, если допускаемое касательное напряжение материала вала $[\tau_{\kappa}]=80$ МПа, а внешний и внутренний диаметры вала равны D=33 мм и d=19.8 мм. Ответ: P=51.4 кВт.

Задача №21. Произвести проверку на жесткость вала кольцевого сечения, с внешним диаметром D = 44,9 мм передающего мощность P = 51,52 кВт при частоте вращения n = 1000 об/мин, если допускаемый угол закручивания $[\theta^{\circ}] = 1 \cdot 10^{-3}$ град/мм. Модуль сдвига $G = 8 \cdot 10^4$ МПа, а отношение c = d/D = 0,6. Ответ: $[\theta^{\circ}] = 1 \cdot 10^{-3}$ град/мм. Задача №22. Определить из условия жесткости диаметры вала кольцевого сечения, передающего мощность P = 51,52 кВт при частоте вращения n = 1000 об/мин, если допускаемый угол закручивания $[\theta^{\circ}] = 1 \cdot 10^{-3}$ град/мм, модуль сдвига $G = 8 \cdot 10^4$ МПа, а отношение c = d/D = 0,6. Ответ: D = 44,9 мм, d = 26,94 мм.

Задача №23. Определить мощность P передаваемую валом кольцевого сечения с внешним диаметром D = 44,9 мм, при частоте вращения n = 1000 об/мин, если допускаемый угол закручивания $[\theta^{\circ}] = 1 \cdot 10^{-3}$ град/м, модуль сдвига $G = 8 \cdot 10^4$ МПа, а отношение c = d/D = 0.6. Ответ: P = 51.44 кВт.

Задача №24. Вал диаметром d=5 см совершает n=120 об/мин. Какова передаваемая мощность P, если допускаемые касательные напряжения равны $[\tau_{\kappa}]=60$ МПа? Ответ: P=18.5 кВт.

Задача №25. Вал диаметром D = 90 мм передает мощность P = 66,24 кВт. Определить предельное число оборотов, если допускаемое касательное напряжение равно [τ_к] = 60 Мпа. Ответ: n = 74 об/мин.

Задача №26. Определить из условия прочности диаметр вала, передающего крутящий момент T = 15000 Hм, если допускаемое касательное напряжение $[\tau_{\kappa}] = 70$ МПа. Ответ: D = 109 мм.

Задача №27. Определить из условия жесткости диаметр вала, передающего крутящий момент T = 15000 Hm, если допускаемый угол закручивания $[\theta^{\circ}] = 0.5 \cdot 10^{-3}$ град/м, модуль сдвига $G = 8 \cdot 10^4$ МПа, а отношение c = d/D = 0.6. Ответ: D = 122 мм.

Задача №28. Определить из условия жесткости диаметры вала кольцевого сечения, передающего крутящий момент T = 15000 Нм, если допускаемый угол закручивания $[\theta^{\circ}] = 0.5 \cdot 10^{-3}$ град/м, модуль сдвига $G = 8 \cdot 10^4$ МПа, а отношение c = d/D = 0.6. Ответ: D = 125.5 мм, d = 75.3 мм.

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ

Текущий контроль

Тестирование для проведения текущего контроля проводится с помощью Системы дистанционного обучения или компьютерной программы КТС-2,0. На тестирование отводится 10 минут. Каждый вариант тестовых заданий включает 10 вопросов. Количество возможных вариантов ответов — 4 или 5. Студенту необходимо выбрать один правильный ответ. За каждый правильный ответ на вопрос присваивается 10 баллов. Шкала перевода: 9-10 правильных ответов — оценка «отлично» (5), 7-8 правильных ответов — оценка «хорошо» (4), 6 правильных ответов — оценка «удовлетворительно» (3), 1-5 правильных ответов — оценка «не удовлетворительно» (2).

Опрос как средство текущего контроля проводится в форме устных ответов на вопросы. Студент отвечает на поставленный вопрос сразу, время на подготовку к ответу не предоставляется.

Практические задания как средство текущего контроля проводятся в письменной форме. Студенту выдается задание и предоставляется 10 минут для подготовки к ответу. Промежуточная аттестация

Экзамен проводится в устной форме. Из экзаменационных вопросов составляется 20 экзаменационных билетов. Каждый билет состоит из трех вопросов. Комплект экзаменационных билетов представлен в учебно-методическом комплексе дисциплины (УМКД). На подготовку к ответу студенту предоставляется 20 минут.